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Abstract

Large Language Models (LLMs) have demonstrated signifi-
cant potential across various applications, but their use as AI
copilots in complex and specialized tasks is often hindered by
AI hallucinations, where models generate outputs that seem
plausible but are incorrect. To address this challenge, we de-
velop AutoFEA, an intelligent system that integrates LLMs
with Finite Element Analysis (FEA) to automate the gen-
eration of FEA input files. Our approach features a novel
planning method and a graph convolutional network (GCN)-
Transformer Link Prediction retrieval model, which enhances
the accuracy and reliability of the generated simulations. The
AutoFEA system proceeds with key steps: dataset prepa-
ration, step-by-step planning, GCN-Transformer Link Pre-
diction retrieval, LLM-driven code generation, and simula-
tion using CalculiX. In this workflow, the GCN-Transformer
model predicts and retrieves relevant example codes based
on relationships between different steps in the FEA process,
guiding the LLM in generating accurate simulation codes.
We validate AutoFEA using a specialized dataset of 512
meticulously prepared FEA projects, which provides a robust
foundation for training and evaluation. Our results demon-
strate that AutoFEA significantly reduces AI hallucinations
by grounding LLM outputs in physically accurate simulation
data, thereby improving the success rate and accuracy of FEA
simulations and paving the way for future advancements in
AI-assisted engineering tasks.

Introduction
In recent years, the development of LLMs has rapidly ad-
vanced, driving numerous innovations in the field of natu-
ral language processing (NLP). State-of-the-art models such
as GPT-4o and Llama 3 have demonstrated exceptional ca-
pabilities in understanding and generating natural language
texts (OpenAI 2023; Touvron et al. 2023). These models,
leveraging deep neural network architectures and extensive
training data, perform remarkably well across various tasks,
including text generation, translation, summarization, and
dialogue systems. As LLMs continue to evolve, their poten-
tial applications as AI copilots in industrial production are
becoming increasingly apparent. By automating processes,
optimizing production workflows, and providing intelligent
decision support, LLMs can significantly enhance efficiency
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and precision in industrial settings. For instance, LLMs can
aid in predicting maintenance needs for equipment, opti-
mizing supply chain management, and offering real-time
monitoring and recommendations in quality control (Trewin,
Clarke, and Thomas 2020; Zhu, Lee, and Ko 2021). Addi-
tionally, LLMs can analyze production data to identify po-
tential issues and optimization opportunities, thus improving
the overall reliability and cost-effectiveness of production
processes (Taylor and Smith 2021).

However, despite the significant advancements in LLMs,
they still face the challenge of AI hallucination when dealing
with complex and specialized tasks. AI hallucination refers
to the generation of outputs that appear plausible but are in-
correct or nonsensical (Bender et al. 2021). In industrial pro-
duction, AI hallucinations can lead to erroneous decisions
and operations, potentially causing production accidents or
economic losses. For example, when LLMs are used to gen-
erate complex engineering designs or production plans, er-
rors in the generated content can severely impact product
quality and safety (Marcus and Davis 2020).

To address the issue of AI hallucinations, various ap-
proaches have been proposed to enhance the accuracy and
reliability of language models. One such approach is knowl-
edge augmentation, where external knowledge sources, such
as knowledge graphs, are integrated with language models to
provide a broader factual basis for reasoning (Petroni et al.
2019; Weissenborn, Kočiskỳ, and Dyer 2017). Another ef-
fective method is multi-modal integration, which combines
text with other modalities, such as images, audio, or video,
thereby providing additional context for generating more ac-
curate outputs (Prakash, Chitta, and Geiger 2021; Li et al.
2019). Additionally, human-in-the-loop feedback loops rep-
resent another important strategy. In this approach, outputs
generated by the model are reviewed and adjusted based on
human feedback, which helps reduce errors and refine model
performance (Christiano et al. 2017; Stiennon et al. 2020).

In addition to these methods, tool augmentation has
emerged as a crucial approach for mitigating AI hallucina-
tions. By allowing language models to interact with external
tools such as code executors, calculators, or databases, mod-
els can generate outputs based on real computations or query
results, thereby significantly reducing the incidence of hallu-
cinations. The ReAct framework proposed by Yao et al. syn-
ergizes reasoning and action, enabling language models to



execute tasks by calling external APIs, thus improving both
task completion and accuracy (Yao et al. 2022). Schick et al.
explored how language models could autonomously learn to
use tools, further enhancing their ability to handle complex
tasks (Schick et al. 2024). Additionally, Gao et al. introduced
the Program-Aided Language Models (PAL), which assist
language models in complex reasoning tasks by generating
code, resulting in more precise outputs (Gao et al. 2023).

Expanding on the concept of tool augmentation, we pro-
pose integrating FEA simulations into the LLM workflow
as an effective way to mitigate AI hallucinations. By com-
bining FEA, a precise physical simulation tool, with LLMs,
we can not only validate the generated content with simu-
lation results but also significantly reduce AI hallucinations
in complex engineering tasks. This approach is particularly
suited to scenarios requiring high precision and physical
consistency, ensuring that the generated solutions are both
linguistically coherent and physically accurate.

Although integrating FEA into LLM workflows has sig-
nificant potential, this process faces substantial challenges,
particularly in areas such as numerical solution conver-
gence, multi-physics coupling, and more. To address these
challenges, this paper proposes and develops an intelligent
system named AutoFEA. First, we mitigate the complex-
ity of traditional FEA software interfaces by using LLM-
generated code. Traditional FEA software typically requires
users to possess a high level of expertise and involves com-
plex operations, posing a significant barrier to most non-
expert users. By leveraging LLMs, we can automatically
generate the corresponding simulation code based on the
user’s natural language description, simplifying the process
and significantly lowering the entry barrier. Second, to han-
dle complex FEA tasks, we introduce a step-by-step plan-
ning approach. Specifically, we decompose complex sim-
ulation problems into multiple simpler sub-problems, with
each sub-problem corresponding to a step in the simulation
process. This divide-and-conquer strategy not only reduces
the complexity of the problem but also allows each step to
be independently handled and optimized, thereby improv-
ing the overall accuracy and efficiency of the simulation. Fi-
nally, to further enhance the quality of the generated simu-
lation code, we designed and implemented a link prediction
model based on Graph Neural Networks (GNNs) and Trans-
formers. This model analyzes and predicts the relationships
between simulation steps, automatically retrieving the most
relevant example codes from the training dataset, which are
then used as references for generating new code. This ap-
proach allows us to effectively leverage existing simulation
knowledge while ensuring that the generated code is accu-
rate and operable. The key contributions of this paper are
summarized as follows:

1. Creation of a comprehensive dataset of 512 FEA sim-
ulation projects, meticulously prepared for training and
evaluating LLM-based FEA systems. To the best of our
knowledge, this is the first dataset specifically designed
for using LLMs to perform FEA simulations.

2. Development of the AutoFEA system, which effectively
integrates FEA into LLM workflows, enabling the seam-

less execution of FEA simulations within an LLM frame-
work. This integration not only simplifies the FEA pro-
cess, particularly for non-experts, but also reduces the oc-
currence of AI hallucinations by grounding LLM outputs
in physically accurate simulations.

3. Introduction of a novel planning approach that decom-
poses complex simulations into manageable steps, en-
hancing accuracy and efficiency by allowing each step
to be independently optimized.

4. Implementation of a link prediction model that improves
the success rate and accuracy of the generated simulation
code by leveraging existing simulation examples, ensur-
ing that the outputs are reliable and operable.

Proposed Method
In this section, we present the technical details of our pro-
posed method AutoFEA for automating finite element anal-
ysis. Its overall framework is illustrated in Figure 1.

Step-by-Step Planning
In complex tasks like FEA, directly generating a complete
code using a LLM can be challenging. The reason lies in
the inherent complexity of these tasks, which often involve
multiple interdependent steps, each requiring highly special-
ized knowledge and detailed operations. Attempting to gen-
erate the entire simulation code at once could lead to er-
rors or omissions, as the LLM might struggle to manage
the intricate dependencies and detailed requirements of each
step. Therefore, decomposing the complex task into smaller,
more manageable steps—known as step-by-step planning—
is crucial. This approach simplifies the problem, enabling
the LLM to generate code incrementally while ensuring that
each step is accurate and feasible.

Code Segmentation and Step Descriptions In FEA soft-
ware such as CalculiX and Abaqus, input files (inp files) are
typically segmented into distinct code blocks using specific
keywords like *NODE and *ELEMENT. These blocks repre-
sent different aspects of the simulation, such as node defini-
tions, element definitions, material properties, and boundary
conditions. Generally, multiple code blocks together consti-
tute a complete step, where each step represents a particular
phase or function of the simulation task.

In the training dataset, these code blocks are grouped
based on their degree of relevance to corresponding steps.
For each step, detailed descriptions are generated, including
the specific objectives, parameter details, and implementa-
tion methods for that step. These pre-processed step descrip-
tions, along with the corresponding code blocks, help the
LLM learn how to decompose complex tasks and generate
the associated code accurately.

Example Retrieval During the testing phase, when a user
provides a new simulation task description, the system first
generates an embedding vector of this description using the
LLM. Next, the system searches the training dataset for the
most similar description by comparing the embedding vec-



Figure 1: Overall framework for AutoFEA. (a) Step-by-Step Planning: Based on the user’s description, a similar case from
the training dataset is retrieved, along with its corresponding step-by-step plan, which is used as a few-shot prompt for the
LLM to generate a new step-by-step plan. (b) GCN-Transformer Link Prediction Retrieval: For each step in the generated plan,
the GNN performs link prediction to retrieve relevant nodes from a graph constructed from the training data. The retrieved
node descriptions and codes serve as few-shot prompts to generate the corresponding code for each step. (c) Integration and
Simulation: The generated codes are integrated and refined by the LLM, then passed to CalculiX for simulation. The simulation
results provide feedback, helping to reduce AI hallucinations and ensuring reliable outputs for the AI copilot.

tors. This process is formalized as follows:

sim(Q,Di) = cos

(
E(Q) · E(Di)

∥E(Q)∥∥E(Di)∥

)
(1)

Here, Q is the query embedding generated from the user’s
description, Di represents the embedding of the ith descrip-
tion in the training dataset, E(·) denotes the function that
generates the embedding vector, and cos(·) denotes the co-
sine similarity between the vectors. The description Di with
the highest similarity score is retrieved, along with its corre-
sponding step-by-step plan.

This retrieved example, consisting of the description and
its associated plan, serves as a few-shot example, which,
combined with the simulation task description provided by
the user, forms the input to the LLM, guiding it in generating
a new plan tailored to the user’s specific task. This retrieval-
based approach ensures that the generated plan is grounded
in similar successful cases, enhancing the accuracy, feasibil-
ity, and logical coherence of the resulting plan.

GCN-Transformer Link Prediction Retrieval
As discussed earlier, when generating code for each step in
a FEA task, it’s crucial to consider not just the current step’s
description, but also the code and descriptions of previous
steps. This interdependence makes it challenging to retrieve
relevant examples using a simple embedding-based similar-
ity approach, which does not account for sequence depen-
dencies. Therefore, we require a retrieval method that can
effectively consider these sequential dependencies.

To address this, we initially considered using a
Transformer-based model for retrieval. The Transformer ar-
chitecture is well-suited for handling sequence data, as it
captures complex dependencies between the current step
and previous steps through its self-attention mechanism. By
leveraging the Transformer, we can better incorporate con-
textual information and the sequential nature of the task, en-
suring that the generated code logically aligns with the pre-
ceding steps. However, relying solely on the Transformer
to capture sequence dependencies might overlook certain
structural relationships inherent in the task. In our FEA code
blocks, specific keywords such as *DENSITY, *ELASTIC,
and C3D20R create natural links between similar steps,
forming a graph structure. To capture these relationships, we
introduced GNNs into the retrieval process. GNNs are capa-
ble of processing graph-structured data, allowing us to lever-
age the connections between nodes (steps) based on these
keywords, thereby improving the retrieval of relevant histor-
ical steps and their associated code.

By integrating both Transformer and GNN approaches,
we developed the GCN-Transformer Link Prediction model.
This hybrid model not only processes the sequential infor-
mation effectively but also utilizes the structural relation-
ships within the graph. As a result, it can more accurately
retrieve the most relevant steps and code blocks from the
training dataset, ensuring that the generated code remains
consistent with the task’s overall context.

Graph Construction In our approach, the graph G =
(V,E) is constructed to represent the relationships between



different steps within the FEA process. Here, V denotes the
set of nodes, where each node represents a step in the FEA
workflow. The feature of each node is the embedding h

(0)
vi

of the step’s description, generated by a LLM. The edges E
represent the relationships between these steps, specifically
indicating when two steps share a common keyword.

Formally, the graph is defined as follows:

V = {v1, v2, . . . , vn}, h(0)
vi ∈ Rd (2)

E = {eij | vi, vj ∈ V and κ(vi, vj) = 1} (3)

where κ(vi, vj) is an indicator function that equals 1 if
the steps corresponding to nodes vi and vj share at least
one common keyword, and 0 otherwise. This graph struc-
ture effectively captures the relationships and dependen-
cies between steps, forming the foundation for the GCN-
Transformer Link Prediction model.

Link Prediction as Retrieval Task In FEA simulations,
the input files for software like CalculiX and Abaqus often
contain initial code blocks that describe the structure and
mesh information of the simulation object. These parts of the
code are typically generated through pre-processing tools,
as accurately describing them in natural language is chal-
lenging. Therefore, these initial steps in the simulation are
treated as known information.

Within our GCN-Transformer model, these known sim-
ulation steps can be viewed as an existing path P =
{v1, v2, . . . , vk} in the graph G = (V,E), where each node
vi represents a known step in the simulation workflow. The
task then is to find the most appropriate node vk+1 in the
graph, given the current path P and the description dk+1 of
the next step. Consequently, this retrieval task is framed as
a link prediction problem. Formally, our goal is to identify
the node vk+1 ∈ V that maximizes the following function,
forming a new edge ek,k+1 with the existing path P and the
step description dk+1:

vk+1 = argmax
v∈V

Score(P, v,Φ(dk+1)) (4)

where Φ(dk+1) represents the embedding of the step de-
scription dk+1, generated by a LLM. The scoring function
Score(P, v,Φ(dk+1)) evaluates the compatibility between
the current path P and the potential next step node vk+1.
This function combines information from the graph struc-
ture (captured by the GCN) and the sequence dependencies
(captured by the Transformer), ensuring that the prediction
accounts for the complex relationships between the steps in
the simulation workflow.

By iteratively repeating this process, we can sequentially
identify the most suitable nodes in the graph, ultimately con-
structing a complete path P ∗ that effectively guides the LLM
in generating the simulation code. This method enables the
model to consider known steps while dynamically adapting
to the description of each new step, ensuring that the gen-
erated code is logically consistent with the overall require-
ments of the simulation task.

GCN-Transformer Model Our GCN-Transformer model
operates on the Steps Graph, which includes all steps from

Figure 2: GCN-Transformer Model.

the training dataset as well as the known structure and mesh-
related steps from the testing dataset. This graph G = (V,E)
encompasses all possible steps vi, each initialized with a fea-
ture embedding h

(0)
vi generated by an LLM from the step de-

scription di, such that h(0)
vi = Φ(di), where Φ represents the

LLM embedding process.
First, the model takes these initial node embeddings and

inputs them into a Graph Convolutional Network (GCN) to
effectively capture both local and global information within
the graph structure. The forward propagation in the GCN is
defined as follows:

h(k)
v = σ

 ∑
u∈N (v)∪{v}

1

cuv
W(k)h(k−1)

u

 (5)

where h(k)
v represents the feature representation of node v at

the k-th layer, N (v) denotes the set of neighboring nodes of
v, cuv is a normalization factor, W(k) is the weight matrix
for the k-th layer, and σ is an activation function. After sev-
eral layers of GCN, the model outputs enriched node rep-
resentations h

(K)
v , which capture both the local and global

contexts, enabling the model to uncover intricate relation-
ships and patterns within the graph.

Next, these enriched node embeddings are combined
into a sequence vector representing the path P =
{v1, v2, . . . , vk}. The path matrix PK is constructed by
stacking the embeddings of the nodes along the path:

PK =
([

h
(K)T
v1 h

(K)T
v2 · · · h

(K)T
vk

])T
(6)

This path vector PK serves as the key K and value V in the
attention mechanism, while the query comes from the em-
bedding of the current step description Φ(dk+1) generated
by the LLM. In this respect, the attention mechanism can be
computed as follows:

Attention(Φ(dk+1),P
T
K) = softmax

(
Φ(dk+1)P

T
K√

dPK

)
PK

(7)
where dPK

represents the dimensionality of PK .
This process evaluates the similarity between the current

step description and the path vector, using this similarity to
weight the path vector and produce the final attention out-
put. By iteratively applying this process, the model dynam-
ically extends the path within the Steps Graph, ultimately



constructing a complete path P ∗ that effectively guides the
LLM in generating the simulation code that is logically con-
sistent with the overall simulation task.

Negative Sampling Strategy In link prediction tasks, the
selection of negative samples is a critical consideration, par-
ticularly in complex graph structures. Randomly selecting
negative samples can lead to the inclusion of nodes that are
highly similar to the positive examples, which is especially
detrimental in our scenario. Specifically, if a negative sam-
ple shares the same keywords as the target node vk+1, such
a node may have features that closely resemble those of the
positive example, making it challenging for the model to dis-
tinguish between positive and negative cases, thereby com-
promising the learning process.

To address this issue, our approach employs a more strin-
gent strategy for negative sampling. We only select nodes
that share no common keywords with the target node vk+1

as negative samples. This means that we exclude any node
from the graph G that is adjacent to vk+1 from being con-
sidered as a negative sample, since adjacent nodes typically
share one or more keywords. By adopting this strategy, we
effectively avoid the problem of false negatives and ensure
that the model can more accurately learn to differentiate be-
tween positive and negative examples.

Integration and Simulation
Based on the optimal path P ∗ obtained from the previous
steps, we proceed to generate the complete simulation code.
For each node along the path P ∗ that is not part of the known
nodes (i.e., nodes that are not related to structure and mesh
information), we treat the node’s description and the corre-
sponding code as a few-shot example. This few-shot exam-
ple, combined with the description and current code for the
step being processed, is then fed into the LLM to generate
the corresponding code for that step. This process is repeated
for all steps along the path P ∗ until the complete simulation
code is fully obtained.

After generating the full simulation code, we perform a
final check by inputting the complete code along with the
user’s original query back into the LLM. This allows the
LLM to review and potentially modify the code to ensure
it aligns with the user’s requirements and expectations. Fi-
nally, the validated simulation code is submitted to CalculiX
for execution. The results of this simulation serve as a refer-
ence for the AI-copilot, thereby helping to reduce AI hallu-
cinations by grounding the LLM’s responses in actual sim-
ulation outcomes. This approach ensures that the AI-copilot
provides accurate and reliable support in complex simula-
tion tasks, enhancing the overall reliability of the system.

Experimental Results and Analysis
In this section, we provide a comprehensive analysis of our
experimental results. We begin by detailing the process of
constructing our specialized dataset, which serves as the
foundation for training and evaluating our LLM-based FEA
system. Following this, we conduct a thorough performance
comparison, highlighting the effectiveness and advantages
of our proposed method in comparison to other approaches.

Finally, we present a detailed case study that demonstrates
the seamless integration of FEA into the LLM workflow,
showcasing the practical applicability and potential of our
system in real-world scenarios.

Experimental Setup

Implementation The experiments were conducted on a
machine equipped with a 12th Gen Intel(R) Core(TM) i9-
12900K CPU, an NVIDIA RTX A6000 GPU, and 64 GB
of RAM. The operating system used was Ubuntu 20.04,
and the Python version was 3.10.12. For interacting with
the LLM, we utilized the langchain library, version
0.2.29. The primary LLM used in our experiments was
GPT-4o. Additionally, for generating embeddings, we em-
ployed text-embedding-3-small. Different LLM al-
ternatives were evaluated to assess their impact on the per-
formance of AutoFEA.

Data Collection and Preparation The dataset used in our
experiments was collected from the official CalculiX web-
site’s test examples, which serve as a standard benchmark
for verifying the functionality and performance of the Cal-
culiX FEA software. They cover a wide range of simulation
scenarios to test various types of analyses effectively.

Due to the high computational cost of running lengthy
codes on GPT-4o, we excluded a portion of simulation
projects with excessively long codes, resulting in 512 se-
lected projects1. Each project includes a brief description
at the beginning, such as “dynamic response to a lin-
ear force; no damping; DIRECT=NO” for the “beam15”
project. These concise descriptions are insufficient to fully
reproduce the entire simulation process, necessitating the
generation of more detailed descriptions. Thus, we utilized
GPT-4o to generate comprehensive descriptions for each
project, which were then manually reviewed to ensure they
accurately reflected the corresponding simulation scenarios.

Next, we segmented these projects into multiple steps
based on four criteria outlined in Table 1. The segmented
code for each step was then submitted to GPT-4o, which
generated detailed descriptions for each step. This process
resulted in 4,792 steps across the 512 projects, with an aver-
age of 9.36 steps per project. The number of steps per project
ranged from a minimum of 3 to a maximum of 16.

Performance Comparison
The primary evaluation metric for our experiments is
whether the generated code can successfully perform the
simulation. To determine the success of a simulation, we
compare the dat files generated by running the original
inp code and the generated code. The comparison is based
on two tolerance levels: a relative tolerance set to 1e-4 and
an absolute tolerance set to 1e-6.

Relative tolerance defines the permissible difference be-
tween two values as a proportion of the larger value, mean-
ing that this difference should not exceed 1e-4 of the larger
value. Absolute tolerance, on the other hand, specifies a
fixed threshold, ensuring that the difference between the two

1https://github.com/autufea/Autofea



Criteria Description
Comment The initial comments and *HEADING

blocks are segmented as the first step, pro-
viding a simple explanation of the project.

Similar
Tasks

Grouping consecutive code blocks that per-
form similar tasks based on identical start-
ing keywords. For example, if multiple
consecutive code blocks start with the key-
word *ELEMENT, they are categorized
into the same step.

Nested
Blocks

Code blocks nested within higher-level
code blocks are grouped together. A
common example is: *MATERIAL,
NAME=ALUM, followed by *ELASTIC
and *DENSITY.

Enclosed
by *STEP

Code segments enclosed by *STEP and
*END STEP are treated as a single step.

Table 1: Segmentation Criteria for Project Steps

values remains within 1e-6, regardless of their magnitude.
By applying these thresholds, we ensure that the generated
simulation results are virtually indistinguishable from those
produced by the original code.

We conducted five sets of experiments, where 90% of the
data was randomly selected as the training set and 10% as
the test set, repeated three times. The experiments are sum-
marized as follows:
1. Direct Generation: Directly generating code from the

description alone.
2. Retrieval-Augmented Generation: Generating code us-

ing the description and the retrieved corresponding code.
3. Planning-Based Generation: Generating a step-by-step

plan from the description that guide the code generation.
4. Retrieval-Augmented Planning: Generating a step-by-

step plan from the description, retrieving similar code
based on the plan, and then generating the code.

5. AutoFEA (Our Method): The proposed method that in-
tegrates the entire pipeline as described.

Additionally, it is important to note that although we re-
moved excessively long codes from the dataset, directly us-
ing these codes without modification would still result in
prohibitively long inputs. This poses two challenges: 1) the
cost of processing such long inputs is high, and 2) the con-
text window of the LLM may be insufficient to handle such
long sequences. To mitigate these issues, for code blocks re-
lated to structure and mesh that exceed 10 lines, we omitted
the excess content. The performance comparison of these
methods is illustrated in Figure 3, which shows the suc-
cess rates across the five different approaches. As depicted,
our proposed method significantly outperforms the others,
achieving the highest success rate in simulation accuracy.

Ablation Study
To assess the impact of LLM choice on AutoFEA’s per-
formance, we replaced GPT-4o with other LLM alter-
natives to rigorously test the framework. As reported in

Figure 3: Performance comparison (success rate %).

Table 2, the results reveal performance variation among
LLMs, but AutoFEA with varying LLMs consistently out-
performs other conventional frameworks like direct gener-
ation, planning-based generation, and retrieval-augmented
generation. These findings reaffirm AutoFEA’s adaptability
to different model strengths while maintaining robust perfor-
mance. It is worth noting that the lack of GNN analysis is not
an oversight but a deliberate choice. While more complex
GNNs could enhance performance, we selected a two-layer
GCN to emphasize the role of graph structure in retrieving
relevant code examples, striking a balance between simplic-
ity and functionality in meeting our learning goal.

Language Model Success Rate (%)
GPT-4o 90.2
GPT-4o-mini 81.6
Gemini-Flash 75.2
Gemini-1.5-Pro 83.8
Llama 3 8b 78.8

Table 2: Comparison across different LLMs.

Case Study
To demonstrate the practical application of our method, we
conducted a case study using FEA of a cantilever beam. The
objective was to simulate the beam’s response to shear force
and analyze the displacement at the point farthest from the
fixed end. As shown in Figure 4, the process begins with
providing the FEA description to the AI system.

Initially, GPT-4o calculated the displacement at the free
end of the beam to be approximately 0.0975 units based on
the user’s input. However, this result was derived under the
assumption of linear deformation and failed to account for
the material’s plastic deformation. In this scenario, plastic
deformation plays a more significant role in determining the
displacement, leading to the AI hallucination observed in
GPT-4o’s output. Such an oversight can have serious con-
sequences, especially in engineering contexts where inaccu-
rate predictions could lead to design flaws, structural fail-
ures, or even safety hazards. If these AI-generated results
were used in real-world applications without verification,
they could result in significant financial losses, legal liabili-
ties, or pose significant risks to human safety.



To address this issue, we ran a complete FEA simulation
through the AutoFEA system, incorporating the effects of
plastic deformation, and fed the simulation results back into
the system. When queried again, GPT-4o accurately identi-
fied the correct displacement value of approximately 0.8738
units, corresponding to Nodes 5 and 6. This case study high-
lights the importance of integrating FEA simulations into
the AI reasoning process, as it helps avoid AI hallucinations
caused by overlooking critical physical phenomena such as
plastic deformation, thereby ensuring accuracy and reliabil-
ity in complex engineering tasks.

Figure 4: Case study: integrating FEA into AI reasoning.

Related Work
This section focuses on three key areas: strategies for miti-
gating AI hallucinations, automation of FEA model genera-
tion, and enhancement of retrieval tasks using GNNs.

Mitigating AI Hallucinations The growing application of
LLMs across various domains (Brown et al. 2020; Radford
et al. 2019; Yang et al. 2019) has highlighted the persis-
tent challenge of AI hallucinations, where models produce
plausible yet incorrect outputs. Several strategies have been
proposed to address this issue. One common approach is
knowledge augmentation, which integrates external knowl-
edge bases or real-time data sources with the model to en-
sure more accurate content generation. Petroni et al. (2019)
demonstrated that integrating knowledge bases with lan-
guage models significantly reduces the likelihood of gen-
erating incorrect outputs. Peters et al. (2019) improved the
accuracy of model outputs by enhancing contextual word
representations through knowledge integration. Another sig-
nificant strategy is multimodal integration, which combines
text with other modalities such as images, audio, or video

to create a more contextually enriched environment, thereby
reducing the likelihood of generating incorrect information.
Li et al. (2019) showed that integrating visual information
with language models can reduce errors in generation tasks.
Human-in-the-loop feedback loops represent another critical
strategy for mitigating AI hallucinations. Christiano et al.
(2017) proposed adjusting model outputs through human
feedback to improve the accuracy of the generated content.
Stiennon et al. (2020) demonstrated how learning from hu-
man feedback can optimize the summarization process.

Automation of FEA The automation of FEA model gen-
eration has garnered increasing attention for its potential to
reduce manual labor and enhance accuracy in engineering
simulations. Aizawa (1991) explored integrating CAD and
CAE systems to streamline the FEA model generation pro-
cess. Pantoja-Rosero, Achanta, and Beyer (2024) used com-
puter vision and machine learning to automate FEA models
from images, specifically for masonry buildings. Jia et al.
(2022) developed a method combining BIM with ontology
technology to automate the conversion of BIM data into
FEA models, thus improving efficiency in structural design.
Advancements in 3D FEA model automation were also dis-
cussed, with methods to reduce manual effort through spe-
cialized meshing techniques (Straughan et al. 2023).

Enhancing Retrieval with GNNs GNNs have been in-
creasingly applied to enhance retrieval tasks, especially in
complex data environments. Recent approaches such as
GNN-RAG integrate the reasoning capabilities of GNNs
with the language understanding of LLMs to improve the
retrieval of relevant subgraphs in knowledge graph question
answering (KGQA) tasks (Mavromatis and Karypis 2024).
Similarly, GNN-Ret utilizes GNNs to enhance passage re-
trieval by considering semantic relationships between pas-
sages in question-answering systems (Li et al. 2024). Addi-
tionally, the use of GNNs in document retrieval has shown
promise, particularly in generating concept maps from un-
structured texts to capture semantic relationships and im-
prove retrieval accuracy (Cui et al. 2022).

Conclusion
In this paper, we presented a novel approach for integrat-
ing LLMs with FEA to automate the generation of FEA in-
put files. By leveraging a combination of step-by-step plan-
ning, GCN-Transformer link prediction retrieval models,
and automated simulation, our method effectively addresses
the challenges of complexity and accuracy inherent in FEA
tasks, significantly reducing the occurrence of AI halluci-
nations. The proposed AutoFEA system not only simplifies
the traditionally complex FEA process but also enhances the
reliability and accuracy of the generated models. Our experi-
ments demonstrated the effectiveness of this approach across
various scenarios, providing a solid foundation for future de-
velopments in AI-assisted engineering workflows. We be-
lieve that our work opens new avenues for more seamless
integration of LLMs into specialized domains, offering a re-
liable AI copilot for complex engineering tasks with greater
accuracy and efficiency.
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